
A new Approach to Decrease Invalidate Rate of
Weak Consistency Methods in Web Proxy

Caching

Chen Chen1,3, Qingyun Liu1,3, Hongzhou Sha2,3, Zhou Zhou1,3, and Chao
Zheng1,3

1 Institute of Information Engineering, Chinese Academy of Science1
2 Beijing University of Posts and Telecommunications2

3 National Engineering Laboratory for Information Security Technologies3

{chenchen,liuqingyun,zhouzhou,zhengchao}@iie.ac.cn
shahongzhou@nelmail.iie.ac.cn

Abstract. With the growing demand for accelerating large scale web
access, web proxy cache is widely used. To make full use of computing
resource and bandwidth of proxy cache nodes, weak cache consistency is
the best choice in most cases. Traditional refreshing methods like Adap-
tive TTL will cause high invalidate rate of web pages. We introduce a
new effective way to decrease the invalidate rate of frequently queried
objects in weak consistency scheme. Based on Zipfs law, our method
focuses on giving the hotspot objects more priorities during cache re-
freshing process, which reduces the invalidate rate on hotspot objects by
paying less concentration on the less frequently queried objects.

Keywords: Web Proxy Cache, Invalidate Rate, Weak Consistency

1 Introduction

Nowadays the scale of the World Wide Web is growing explosively, and web
proxy cache is widely used. Its well known that transparent proxy caches like
Squid can only maintain a weak consistency. TTL (Time-To-Live), Adaptive
Time-To-Live, Client Polling and Piggyback Invalidation are popular weak con-
sistency mechanisms. TTL and Adaptive TTL mechanism use timers based on
modification-time to update cached pages, making a stable invalidate rate rel-
atively. They cannot take advantage of real-time cache accessing behavior C
limiting the invalidate rates dependency on the server modification time uncon-
trollably. And the objects which are less of worthy in cache updating process
occupy large burden on the limited bandwidth and computing resources. The
client polling mechanism will update cache items periodically, but making a high
invalidate rate when the updating period is too long. It will also make a heavy
burden on performance when the period is set to too small. And piggyback in-
validation mechanism calls for more cooperation between proxy caches and web
servers, which is not applicable in transparent proxy caches. Among all of the



2

above weak consistency mechanisms, we found a way of improving the tradi-
tional weak consistencys performance by using the distribution of user accessing
behavior on traditional effective Adaptive TTL or TTL methods. Furthermore,
we also introduce an estimating method for hotness calculation, based on the
exponential hotspot raising assumption.

2 Related work

Lee Breslau[1] described that the Zipfs law is implemented in the web caching
area naturally. And Spanoudakis[2] made a new approach on the invalidate rate
improvement, focusing on the prediction of more accurate updating timer com-
pared with the widely adopted Adaptive TTL method. J Gwertzman[3] proposed
the Adaptive TTL method, which can produce an invalidate rate less than 5% -
a big improvement among weak consistent schemes. While Cao[4] made exper-
imental comparison among Adaptive TTL, Polling-every-time and Invalidation
methods, showing that invalidation method is the most recommended protocol,
which could make the best performance either on network traffic and workload,
or on the invalidation rate. But the invalidation method introduced more burden
on the complexity between cache server and the resource server - which does not
fit for the proxy cache environment, especially when the proxy cache is transpar-
ent from the content. Moreover, Li[5] developed the lease algorithm in mobile
network, which can balance both space and control message usages among strong
consistency strategies like polling-every-time and invalidation. Krishnamurthy[6]
presented the Piggyback methods, better than many traditional methods, which
gave us an pruning recommendation in algorithm selection. Barish[7] gave us
an outline view of the existing web caching techniques, including proxy-caching,
proxy caching and transparent caching, which are all our interests. Wang J.[8]
made a remarkable description over each aspects of web caching, and introduced
the weak consistency mechanism especially.

3 EW (Enhanced Weak consistency) model

The Adaptive TTL method can guarantee 5% invalidate rate at most, but with
the increasing scale of the World Wide Web, 5% also means a large amount of da-
ta. As its known to all, web querying behaviors obey the Zipfs law, which shows
a long tail effect on Web objects querying. In most of the implementations about
web proxy caching, objects with higher frequency are more worthy of caching,
which could easily cause burdens in caching computation. What we care about
is to make traditional weak consistency algorithms like Adaptive-TTL more ef-
fective in the hotspot web objects and reduce the invalidate rate especially on
hotspot objects, increasing the average refreshing frequency on hotspot objects
in order to reduce the invalidation rate selectively. We introduce a hotness aware
queue, each time when object in cache is visited, it will be operated on its mea-
surement, and when the measurement goes over the threshold, the object will
be pushed into the updating queue, which is sorted by update timer, generated



3

by Adaptive TTL method. Theres a watching thread outside the queue to check
whether the first update time is up over and over. Whenever it is confirmed that
the first object in updating queue is out of date, the object will be updated from
the original Web server, the thread will also check objects form the second to the
end to refresh objects. Updating methods worst time complexity is O(n). But
on average therere no more computation requirements than the Adaptive TTL
method. In most of the cases, Web objects’ frequencies obey the Zipfs law C an
exponent cumulative distribution of frequency. And in web cache environment,
we should consider more characteristics of web objects such as web access behav-
iors including recency, frequency and web objects properties including size, cost
or latency and type of objects etc. Based on the unbalanced distribution, therell
be less than 40% of the objects attending the updating process experimentally,
and with a tolerance on the invalid rate on the objects that are less worthy of
caching, the global invalidate rate of Adaptive-TTL will reduce to 2% at most.
First of all, we are going to talk about the qualification measurement of judging
whether an object is worthy of caching or not.

3.1 Summarize of Frequency measurement

One of the core jobs of hotness estimation is the appropriate measurement of
objects characteristics. We should give objects with larger frequency bigger prior-
ities. Our implementation is to use the frequency information in the exponential
assumption later talked about.

3.2 Types of Web Objects

From qualitative analyses of the modification periods of web objects, we conclude
an experiential frequency list below:

Table 1. Experiential Frequency level of different object types

PPPPPPPType
Size

Small Large

HTML Most Moderate

Script Moderate Moderate

Other Text Moderate Least

Binary Least Least

The most frequently modified objects are more likely to be those web objects
with less modification cost, such as the text formatted object like HTML. And
the binary objects like flash, voice and video objects are the less likely to be
changed - the modifications on such objects are usually redirected to new ad-
dresses. Moreover, the type of the objects can easily be recognized by the URL
suffixes or header information of the objects. We could give each type a weight
separately related to the modification frequency above.



4

3.3 Cost and Size of Web Objects

As for the modification cost of large objects is bigger than that of the smaller
ones, we estimate that the frequency pattern and the size of objects have inverse
relationship. Since it is in the proxy cache environment, internet transmission
latency is another important pattern, which not only has relationship with the
size of object, but also related to the delay of each objects. We describe the delay
by the variable cost, and the frequency of modifications will be directly propor-
tional to cost

size . So, we concluded all of the characteristics above to a compound
measurement variable a, which is showed below:

a =

(
cost

size

)
· weight (1)

3.4 Hotness estimation model

To simplify the hotness model, we make an assumption that all of the querying
hotness are similar to an exponential function exponentially as:

C (t) = at (2)

Where ”a” is the compound measurement talked above and ”t” is the time. The
real-time frequency could be described as count

∆t , where ∆t is the querying period
and the count is sampled during the period ∆t. Since our goal is to estimate
the expected hotness, which could be estimated with ∆t, we should give an
expression of the variable ∆t. Based on assumption, we believe that each time
when we make a sampling during the period, the accumulated count has an
exponent relationship with t0 as (3):

∆t = loga

(
1 +

∆Cexpect
C (t0)

)
(3)

In equation (3), variable a shows the characteristics of the web objects, t0 is
the query time since the appearance of the cached item, and C(t) is the expect-
ed accumulated hit count. ∆t is the expecting querying period, and Cexpect is
the expected count sampled in last period while C(t0) is the last accumulated
count. Since we should give an expression of the hotness with real-time sampled
frequencies, we will simplify the relationship between t0 and ∆t into ∆t-only
updating function with the equation below:

t0 = loga
∆C

a∆t − 1
(4)

Plugging (4) into (3), the next expected querying cycle ∆t′ is generated in (5) .

∆t′ = loga

(
1 +

∆Cexpect
∆C

·
(
a∆t − 1

))
(5)

Our curiosity is placed on the period, where we can gain the hotness infor-
mation from it. The hotness could be described either as ∆t′ with a descending



5

comparing order or as 1
∆t′ with an ascending order. Moreover, the promotion

threshold assignment could be based on the formula, too.

3.5 Hotness Aware Queue algorithm

Hotness is measured by the hotness pattern, which could be simplified as frequen-
cy. Whenever an object is queried, it will be updated in cache and be checked
whether it has the qualification to promote to the Hotness Queue or not. The
Hotness maintenance logic is described below:

Algorithm 1 Hotness Maintaining

Input: The key of the target object Kt

Output: The content of the object Dt

if Kt is in the Cache then
Push Kt into Cache with initial Frequency
return Not found

else
if Object Kt exceeds Threshold then

Push Kt into Updating Queue
end if
Update Kt’s Frequency
Find Dt in Cache with Kt

end if
return Dt

When an object is put into the updating queue, there should be an updating
procedure, described as:

Algorithm 2 Updating

Initialize the Updating Queue
while True do

if the 1st Object out of date then
Update the 1st object
for i = 2 to Size(Queue) do

if the ith Object out of date then
Update the ith object

else
break

end if
end for

else
Sleep(timer)

end if
end while



6

In the process, the working thread will check the Hotness Queue over and
over until the main process is terminated. The updating period in hotness queue
is given by outside Adaptive TTL method or traditional TTL method optionally,
which are not our emphasis. In the next section, we will discuss the invalidate
rate of this method, and later we will show the efficiency of data reduction based
on the distribution.

3.6 Analysis

For most websites, the modification cycle of web object is approximate to con-
stant. Let the modification cycle be T and the refreshing cycle of cached object
be ∆t, the invalidate rate of each cached objects could be estimated by (6).

rateinvalid ≤
{
∆t
T , ∆t < T
T
∆t , ∆t ≥ T

(6)

According to Zipfs law, we use a distribution expression formula shown in
(7), where ”i” is the ranking of cached item by frequency, N is the number of all
cached objects, and Fi is the relative frequency and hotness of object ”i”. Since
the formula is uniformed, Fi can also be treated as appearance probability of
objects.

Fi =
1/i∑N
1 1/n

≈ 1

0.96i · ln 2.22N
(7)

Let the Threshold of objects with more worthy be T, the expected number of
refreshed objects Nc is described as:

Nc ≤
1

0.96T · ln2.22N
(8)

Because of the normalization operation in (7), Nc is also the data reduction
scale, and (1 − Nc) of the cached data will not be updated on average, which
makes an improvement on performance. Hotter cached items will get smaller
refreshing cycle than the original ones, which in fact makes the cache updating
process more effective for the hotspots based on the adjusting to the real-time
querying behavior. With the same refreshing computing resources, hot objects
will get more refreshing opportunities, making a reduction on invalidate rate as
well. Meanwhile, the optimization also reduces the wastes of computing power
on the objects which are less worthy of caching.

4 Experiment

The dataset is a 30 days web querying log of 56,374,164 lines from a web proxy
server, with 16,625,621 lines could be cached, of which 2,705,302 lines are unique.
We made a simulation based on the data. With the simulation environment, we



7

can continuously test our algorithms. Our experiment are focused on the data
reduction scale of cached data, which has an direct proportion to the reduction
rate of invalidate rate.
Since the distribution of data in small cache is distinguished from the whole
dataset distribution, especially for the scale of low frequency objects, we make
the experiment between long-term querying in total 30-days and the short period
distributions in 5 minutes. The distribution is showed below:

Fig. 1. 30-Day CDF Fig. 2. 5-Min CDF

Table 2. Top-4 Least Frequently Accessing CDF Comparison

Frequency 30 Day Count Percentage 5 Min Count Percentage

1 1,962,470 11.80% 628 59.81%

2 304,530 3.66% 77 14.67%

3 114,184 2.06% 29 8.29%

4 63,925 0.38% 21 8.00%

Obviously, we can figure from the experiment that the reduction on data
scale by frequency is more effective in short periods, with a large amount of data
with frequency 1. And objects who are put into cache with less frequency are
not likely to be accessed again. In the experiment , there was a 60% reduction
by limiting the frequency to 1, where with a higher threshold and more invalid
tolerance on less frequent items, we could either gain lower computing power
on updating process or the improvement on the performance of invalidate rate
C reducing 2.5 or more times of invalidate rate, or achieving a reduction of
computing power on refreshing procedures.

5 Conclusion

Weak consistency caching method is one of the most important parts of proxy
caching, especially for the web proxy caching area in the big-data world. Al-



8

though Adaptive-TTL method shows a stable performance on invalidation rate
control, when it comes to the unlimited high speed network flow field, 5% is
not a small rate anymore, which is hard to tolerant. Facing the problem of
optimizing the invalidate rate of cache weak consistency scheme, we present
an EW(Enhanced Weak Consistency) model to optimize the invalidate rate of
Adaptive TTL, TTL method and so on based on Zipfs law, decreasing the cache
refreshing cycle selectively. Our work mainly focuses on the measurement of web
objects, hotness estimation modeling and the invalidate rate estimation. Final-
ly, under the same refreshing calculation resources, we made a reduction of the
updating data scale, reducing the invalidate rate of hotspots to about 2% when
we set the promotion threshold to 1. With our work, we can use limited cache
spaces and computing power more rationally and controllable. In the next pro-
cess, we will optimize the qualification function and modify the model to fit for
cache replacement algorithms and cache prefetching algorithms, using schedule
techniques to make the updating measurements more compatible.

6 Acknowledgement

This work was supported by the National High-Tech Research and Develop-
ment Plan 863 of China under Grant No. 2011AA010703, the Strategic Priority
Research Program of the Chinese Academy of Sciences under Grant No. X-
DA06030200, and the National Natural Science Foundation under Grant No.
61070026.

References

[1] Breslau, L., Pei Cao, Li Fan, Phillips, G., Shenker S.: Web caching and Zipf-
like distributions: evidence and implications. INFOCOM ’99, Vol. 1, 126-134
(1999).

[2] Spanoudakis, Manos, Dimitris Lorentzos, Christos Anagnostopoulos, Stathes
Hadjiefthymiades: On the use of Optimal Stopping Theory for Cache Consis-
tency Checks. In IEEE Informatics (PCI), 2012 16th Panhellenic Conference,
327-332 (2012)

[3] J Gwertzman, James, Margo I. Seltzer: World Wide Web Cache Consistency.
In USENIX Annual Technical Conference, 141-152. (1996).

[4] Cao, Pei, Chengjie Liu: Maintaining strong cache consistency in the World
Wide Web. Computers, IEEE Transactions on 47, no. 4, 445-457 (1998).

[5] Li, Xiaoqian, Feng Qiu, Huachun Zhou, Hongke Zhang, and Ilsun You: Main-
taining strong consistency for the identifier-to-locator mapping cache. In Globe-
com Workshops (GC Wkshps), 2012 IEEE, 986-991 (2012).

[6] Krishnamurthy, Balachander, and Craig E. Wills: Study of Piggyback Cache
Validation for Proxy Caches in the World Wide Web. In USENIX Symposium
on Internet Technologies and Systems, 38 (1997).

[7] Barish G, Obraczke K. : World wide web caching: Trends and techniques.
Communications Magazine, IEEE, 38(5), 178-184 (2000).

[8] Wang J.: A survey of web caching schemes for the internet. ACM SIGCOMM
Computer Communication Review, 29(5), 36-46 (1999).


